GFDL’s CM2 Global Coupled Climate Models. Part IV: Idealized Climate Response
نویسندگان
چکیده
The climate response to idealized changes in the atmospheric CO2 concentration by the new GFDL climate model (CM2) is documented. This new model is very different from earlier GFDL models in its parameterizations of subgrid-scale physical processes, numerical algorithms, and resolution. The model was constructed to be useful for both seasonal-to-interannual predictions and climate change research. Unlike previous versions of the global coupled GFDL climate models, CM2 does not use flux adjustments to maintain a stable control climate. Results from two model versions, Climate Model versions 2.0 (CM2.0) and 2.1 (CM2.1), are presented. Two atmosphere–mixed layer ocean or slab models, Slab Model versions 2.0 (SM2.0) and 2.1 (SM2.1), are constructed corresponding to CM2.0 and CM2.1. Using the SM2 models to estimate the climate sensitivity, it is found that the equilibrium globally averaged surface air temperature increases 2.9 (SM2.0) and 3.4 K (SM2.1) for a doubling of the atmospheric CO2 concentration. When forced by a 1% per year CO2 increase, the surface air temperature difference around the time of CO2 doubling [transient climate response (TCR)] is about 1.6 K for both coupled model versions (CM2.0 and CM2.1). The simulated warming is near the median of the responses documented for the climate models used in the 2001 Intergovernmental Panel on Climate Change (IPCC) Working Group I Third Assessment Report (TAR). The thermohaline circulation (THC) weakened in response to increasing atmospheric CO2. By the time of CO2 doubling, the weakening in CM2.1 is larger than that found in CM2.0: 7 and 4 Sv (1 Sv 10 6 m s ), respectively. However, the THC in the control integration of CM2.1 is stronger than in CM2.0, so that the percentage change in the THC between the two versions is more similar. The average THC change for the models presented in the TAR is about 3 or 4 Sv; however, the range across the model results is very large, varying from a slight increase ( 2 Sv) to a large decrease ( 10 Sv).
منابع مشابه
LETTERS Simulated Tropical Response to a Substantial Weakening of the Atlantic Thermohaline Circulation
In this study, a mechanism is demonstrated whereby a large reduction in the Atlantic thermohaline circulation (THC) can induce global-scale changes in the Tropics that are consistent with paleoevidence of the global synchronization of millennial-scale abrupt climate change. Using GFDL’s newly developed global coupled ocean–atmosphere model (CM2.0), the global response to a sustained addition of...
متن کاملInfluence of Ocean and Atmosphere Components on Simulated Climate Sensitivities
We examine the influence of alternative ocean and atmosphere subcomponents on climate model simulation of transient sensitivities by comparing three GFDL climate models used for the CMIP5. The base model ESM2M is closely related to GFDL’s CMIP3 climate model CM2.1, and makes use of a depth coordinate ocean component. The second model, ESM2G, is identical to ESM2M but makes use of an isopycnal c...
متن کاملIs “rich-get-richer” valid for Indian Ocean and Atlantic ITCZ?
[1] Climate models often project an increase of rainfall under global warming over the climatologic wet regions from the global zonal-mean perspective. However, this “rich-get-richer” mechanism is not valid on a basin scale. In this study by analyzing climate change experiment outputs from an idealized atmospheric general circulation model with uniform sea surface warming and the Coupled Model ...
متن کاملAtmospheric dynamics feedback: concept, simulations and climate
The regional climate response to radiative forcing is largely controlled by changes in the atmospheric circulation. It has also been suggested that global climate sensitivity depends on the circulation response, an effect we call the “atmospheric dynamics feedback”. Using a technique to isolate the effect of changes in atmospheric circulation on top-of-atmosphere (TOA) radiation, we calculate t...
متن کاملHistorical and idealized model experiments: an intercomparison of Earth system models of intermediate complexity
Both historical and idealized climate model experiments are performed with a variety of Earth system models of intermediate complexity (EMICs) as part of a community contribution to the Intergovernmental Panel on Climate Change Fifth Assessment Report. Historical simulations start at 850 CE and continue through to 2005. The standard simulations include changes in forcing from solar luminosity, ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2004